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Chapter 19 

Estimating the dose-response function 

 
“Dose-response” 
 
Students and former students often tell me that they found evidence for dose-response. I know 
what they mean because that's the phrase I have also been taught to use, many years ago. It is, 
however, a poorly stated idea. 
 
Let E be a continuous exposure variable, and let D be the disease variable or some function of it 
such as mean, probability, and log-odds. Let D=f(E) — with causality in mind, not prediction. 
Then the function I just defined is a dose-response function. When specified, it tells us how the 
value of D "responds" to the "dose" of E, where "responds" denotes cause-and-effect relation and 
"dose" substitutes for "value". Notice that the dose-response function is defined even when E has 
a null effect on D. In that case the function is flat: f(E)=constant. The value of D is not influenced 
by the value of E. 
 
"Evidence for dose-response" is therefore a meaningless claim; there is always some dose-
response function relating D to E. What users of the phrase try to say is that they found evidence 
for a special type of a relation: a monotonic dose-response function. They want to say that the 
larger the value of E, the larger the value of D (monotonically increasing), or that the larger the 
value of E, the smaller the value of D (monotonically decreasing). I will skip the formal 
definitions of these terms, as well as the distinction between a monotonic function and a strictly 
monotonic function. 
 
Whether monotonic or not, a dose-response function provides estimates of the effect of E on D 
for any pair of values of E, say, e1 and e2. If the function is known, then the effect of the causal 
contrast E=e2 versus E=e1 is the contrast between f(e2) and f(e1), usually quantified as f(e2)-f(e1),  
exp(f(e2)-f(e1)), or f(e2)/f(e1). Knowing the dose-response function is, therefore, knowing all the 
effects of E on D when E is continuous. No small matter. 
 
 
How do we know what the dose-response function is? 
 
Relax, I am not about to reveal any great news. We don't know. We never know, other than in the 
scientific sense of "knowing". Everything worth knowing in science is no more than a conjecture 
(even when the whole of science votes "we know" and label any criticism as denial, bias, 
ignorance, and the like). So rather than asking "how do we know?", let's ask "how do we 
explore?", or "how do we estimate?" 
 
 
Method 1: Display the data 
 
This might work, rarely. If D is a continuous variable, and you don't need to condition on any 
variable to estimate the effect, you may display the data points {E, D} in a graph and look for a 
pattern. That is, you may try to fit a smoother through the cloud of data, thereby approximating 
the dose-response function. Beyond that rare example, the method fails. What will you learn from 
displaying the values of a binary D against the values of E? Not much. What values of D will you 
display, when D is the log-odds of the disease, and you have to condition on variables X, Y, and Z 
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to remove confounding bias? There are no values to display, unless you specify the dose-response 
function… Circularity. 
 
 
Method 2: Linear, until proven otherwise 
 
If I had to come up with a single example of a poor statistical paradigm, "linear, until proven 
otherwise" might be my choice. Here is the method: 
 
Fit and solve the following equation (or some variation of it): 
  

D  =  0 + 1 E +  V 
 
where V is notation for the covariates on which you need to condition and their coefficients. 
Then, test a null hypothesis, 1=0. If rejected by a magical p-value, conclude that you have 
evidence that 1≠0. But you do NOT have evidence for a linear function. You have evidence for a 
non-zero coefficient — if you assume a linear function. Let's repeat: if you assume a linear 
function, you have evidence that the function is not flat. But who says that the dose-response 
function is linear to begin with? By analogy (from logic): suppose you assume that the sun is 
colder than we think, and then show that if that were the case, life on earth is still possible. Is this 
evidence that the sun is colder than we think? 
 
What happens if you did not succeed in rejecting the null? Do you have evidence for 
f(E)=constant, a flat dose-response function (null effect of E on D)? No. You have evidence for 
nothing. The lack of evidence against the null is not evidence for the null. [This might be a good 
time to visit, or revisit, my home page and read the dialogues on null hypothesis testing.] 
 
The story does not end, however, even when the null is rejected. In that case you are told to fit 
another model, a quadratic function, 
 

D  =  0 + 1 E + 2 E2 +   V 
 
and test another null: 2=0. Again, you are told to draw the following (erroneous) inference: 
 
If the null is rejected, you have evidence for a quadratic dose-response function. (No, you don't. If 
you assume a quadratic dose-response function, you have evidence that 2≠0. But who says that a 
quadratic function is indeed the true dose-response function to begin with? Can't the function be 
some higher order polynomial?) 
 
If the null is not rejected, you have evidence for a linear dose-response function. (No, you don't. 
The lack of evidence against 2=0 is not evidence for 2=0. It is evidence for nothing. The 
function may still be anything: linear, quadratic, cubic, higher order polynomial. You have 
gathered no new knowledge whatsoever.) [Again, look up "A non-significant dialogue" on my 
home page.] 
 
Statisticians are usually competent in logical inference, so what has caused them to take here an 
erroneous route? The explanation may be found in a paradigm called "simplicity". Linear 
function is the simplest dose-response function, and a quadratic function is next in line. That's 
true, but scientific discovery is not about providing a simple description of causality. It is about 
searching for a true description of causal reality. In this case, simplicity is both simplistic and 
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wrong. You may choose a linear function only when a thorough inquiry, as described later, leads 
to that choice. Linearity may be the conclusion at end of the road; it should never be the 
assumption at the beginning. 
 
 
Method 3: A step function 
 
Imagine a dose-response function that is composed of a series of horizontal lines connected by 
vertical lines. That's a step function. The steps may go only up, only down, or both up and down 
in any order. We have seen this function before, many times. Let's review the method by which it 
is fit. 
 
First, categorize the exposure into k successive categories, say, k=4. In each of the four 
categories, fit a horizontal line, f(E)=constant, where the constant is D (in our notation): mean, 
log-odds, probability, etc. For example, the constant may be the mean of a continuous D in each 
of the four categories of E, or the log-odds (D=1) for a binary D. In regression, these constants are 
easily found by creating k-1 dummy variables and regressing D on those variables (and anything 
else that should be conditioned on).  
 
Table 1 shows the coding of dummy variables, where E is LDL cholesterol and the four 
categories are approximately quartiles of the LDL distribution. The lowest quartile serves as the 
reference category. 
 
 
Table 1. 
 

 
 
Regressing the log hazard of strokea (D in our notation) on the dummy variables, we find the 
following solution: 
 

D  =  –0.07 LDL2 – 0.03 LDL3 + 0.43 LDL4 
 
 
And the graph is displayed below. 
 

                                                 
a Not exactly. In Cox regression, we don’t actually predict the log hazard since we ignore a time-dependent intercept. But that 
omission only moves the function up or down. The shape of the function, f(LDL2, LDL3, LDL4), does not depend on the unspecified 
intercept. 
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Figure 1. 

 
 
 
As you can see in the graph, the step function explicitly assumes that E has a null effect on D 
within each category (say, no effect for 230 vs.165 ) and a sizeable effect for similar values on 
opposite sides of each cutoff point (say, 162 vs. 158. It is therefore a joke. No one would assume 
that a step function is a correct description of the true dose-response function. What is often done 
next is "a test for linear trend", a quadruple joke.b First, the test depends on arbitrary coding of the 
distance between categories. Second, it is not a test of monotonicity across adjacent categories. 
Third, it is not a test of trend across the range of a continuous E. Fourth, the procedure rests on 
the shaky foundation of null testing and p-values. 
 
I prefer another approach. Simply try to draw a smoother through the steps. This is your rough 
guess of the dose-response function, and it is no more than a semi-quantitative guess, a good start. 
What's next? 
 
 
Method 4: Linear spline function 
 
Look again at Figure 1. Would it not be better if you could fit a sequence of contiguous lines that 
are not constrained to be horizontal?  I mean something like the following graph: 
 
Figure 2. 
 
 

 

                                                 
b You can find this nonsense in my first-author papers too, early in my career. Advice for the novice: don’t assume that what 
epidemiologists and statisticians around you are doing is necessarily correct. Many of them are just duplicating uncritically what they 
had been taught. 
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This type of a dose-response function allows you to estimate the effect not only between two 
categories of E, but also within each category. In addition, it is easier to draw a smoother through 
such a graph than through a step function. 
 
Figure 2 is a linear spline. Using the same example of LDL and stroke, I will explain the 
technique of linear spline regression,c and then, why it works. 
 
First, create three "spline variables" for the four categories of LDL (k-1), analogous to three 
dummy variables (Table 2). Notice that unlike dummy variables, spline variables are continuous, 
not binary.  
 
Table 2. 
 

 
Next, regress the log hazard of stroke (D in our notation) on the spline variables and LDL. We 
find the solution 

D  =  –0.0041 LDL + 0.0028 S2 + 0.0113 S3 – 0.0019 S4 
 

the graph of which is displayed below. 
 
Figure 3. 

 
 
                                                 
c Many students confuse “linear spline regression” with “linear regression”. The former is not the well-known least-squares 
regression. Rather, linear splines can be fit within any regression model we have discussed (logistic, Poisson, Cox, and linear), 
depending on the nature of D. 
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So how does it work? Why do the spline coding and spline regression create a function that is 
composed of contiguous straight lines? 
 
It is not that difficult to understand, once we see the actual function in each category of LDL. 
 
Quartile 1: D  =  –0.0041 LDL  (notice that all spline variables take the value of zero) 
Quartile 2: D  =  –0.0041 LDL + 0.0028 S2   (notice that S3=0 and S4=0) 
Quartile 3: D  =  –0.0041 LDL + 0.0028 S2 + 0.0113 S3  (S4=0) 
Quartile 4: D  =  –0.0041 LDL + 0.0028 S2 + 0.0113 S3 – 0.0019 S4 
 
Recall that the spline variables were created from LDL (Table 2): 
 
S2 = LDL–110 
S3 = LDL–135 
S4 = LDL–160 
  
Replacing the spline variables with the expressions above, we see the following functions: 
 
Quartile 1: D  =  –0.0041 LDL   
Quartile 2: D  =  –0.0041 LDL + 0.0028 (LDL–110)  
Quartile 3: D  =  –0.0041 LDL + 0.0028 (LDL–110)  + 0.0113 (LDL–135)  
Quartile 4: D  =  –0.0041 LDL + 0.0028 (LDL–110)  + 0.0113 (LDL–135) – 0.0019 (LDL–160) 
 
First, notice that the function D=f(LDL) is linear in each quartile. For example, simplifying the 
function in Quartile 2, we get: 
 
D  = –0.0041 LDL + 0.0028 (LDL–110) = (–0.0041 + 0.0028) LDL – 0.0028x110  
     =  – 0.308 – 0.0013 LDL  
 
Try to simplify the function in Quartiles 3 and 4 and get a concise linear expression (0+1LDL). 
 
Second, notice that at the cutoff points between adjacent quartiles, the function to the left and the 
function to the right predict the same value of D. Take, for example, the cutoff between the first 
quartile and the second quartile (LDL=110). 
 
The function to the left (Quartile 1) predicts:   D  =  –0.0041x110 = –0.451    
The function to the right (Quartile 2) predicts: D  =  –0.0041x110  + 0.0028 (110–110) = –0.451    
 
Which means that the function is contiguous at LDL=110. 
 
That is also the case at the cutoff between the second quartile and the third (LDL=135), and at the 
cutoff between the third quartile and the fourth (LDL=160). (Check it.) That's why the cutoff 
points are formally called "knots". The line to the left of a knot and the line to the right of a knot 
meet (are "tied") at the knot. And that's why the spline coding and regression always generate 
something like Figure 2, a sequence of contiguous straight lines. 
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Method 5: Quadratic spline function 
 
Linear spline is better than a step function, but we can do even better. How about allowing for 
some curvature (a quadratic function) in each quartile of LDL, and forcing not only contiguity at 
the knots but also smooth continuity? So smooth that no one can tell from the graph where the 
knots are located? 
 
As you might have guessed, we would still need spline variables, but this time -- their squared 
version. Also needed is LDL-squared. Here is the quadratic spline model and its solution: 
 

D  =  0.0791 LDL – 0.0004 LDL2 + 0.0009 S22 – 0.0004 S32 – 0.00003 S42 

 
Replacing the spline variables, we get 
 
D = 0.0791 LDL – 0.0004 LDL2 + 0.0009 (LDL–110)2 – 0.0004 (LDL–135)2 – 0.00003(LDL–160)2 

 
If you simplify the function in each quartile, you will see that you get four (different) quadratic 
functions. As before, it is easy to check that the functions are contiguous at the knots. Lastly, the 
continuity is smooth because, at each knot, the first derivative of the function to the left is 
identical to the first derivative of the function to the right. 
 
Figure 4 displays the quadratic spline function. The vertical lines indicate the knots (110, 135, 
160). Had they not been shown, you would not have been able to tell where they are located. 
 
Figure 4. 
 
 

 
What can we learn from Figure 4? 
 
Many of us will dislike the "inconsistency" in the graph. We tend to like monotonicity and 
dismiss almost any other dose-response pattern as "implausible", "noisy data", and the like. Well, 
these are the results and we ought to interpret them one way or another. Here is my take:d  
 
I am not particularly troubled by the up-down-up pattern because the "hill" is low and the 
"valley" is shallow. If this is a good approximation of the dose-response function, I see tiny to 
small effects in the range of 70 to 150 or so. In this range, the most extreme fluctuation we 

                                                 
d Pretending that we don’t need to condition on any variable to estimate the effect… 
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observe (on the Y-axis) is about 0.2. Since D is log-hazard, a difference of 0.2 between two log 
hazards translates to a hazard ratio of about 1.2 (or 0.82), nothing to get excited about. By 
contrast, I see nearly linear shape in the upper quartile and some meaningful effect sizes in that 
region versus others. For instance, the contrast between 230 and 130 translates to a hazard ratio of 
about 2.2. So, perhaps the effect is somewhere between null and very small up to 150 or so and 
fairly linear thereafter, reaching as high as two-fold hazard for some distant contrasts.  
 
What I wrote above sounds to me like science (i.e., interesting conjectural knowledge), and a lot 
more scientific than "a statistically significant linear trend across four quartiles (p<0.001)". 
 
 
A few summary points  
 
 That we allow a quadratic function does not imply that we enforce much curvature. Look, for 

example, at the shape of the graph in the upper quartile (Figure 4). It is close to a straight line. 
Although the function is quadratic, it does not have much curvature in that uphill region. The 
downhill region is farther to the right, well into non-existing values of LDL. 

 
 A quadratic function has a minimum or a maximum, which means that the graph can change 

direction only once between two adjacent knots. Some people choose cubic spline -- allowing 
a cubic function between successive knots -- which means that the graph can change direction 
twice in any category (say, up-down-up). I think it's overdoing the method. If the categories 
are not too wide and the data are not sparse, I do not expect to miss a change of direction by 
using quadratic spline. 
 

 The choice of the number (and location) of the knots is arbitrary. I think that three knots are a 
good choice whenever the data are not sparse. Four may be used with abundant data, and two 
-- when you are worried about sparse data. Oftentimes, the graph is not very sensitive to some 
variation in the location of the knots. 

 
 It's a good idea to give some indication of how much data you have in each category. For 

example, I could have displayed the number of strokes in each quartile. The amount of data 
might also guide the choice of the knots (i.e., their locations). 

 
 Do not assume that quadratic spline regression is some kind of panacea. Remember that we 

supply assumptions and constraints (number and location of the knots, quadratic function, 
continuity at the knots, maximum likelihood estimation), which in turn allows the data to 
deliver results (coefficients). The scientific road is always a two-way road between us and 
data. Data never speak for themselves; they respond to whatever we impose in our models. 

 
 Spline regression is actually a family of methods. There are variations which I did not discuss 

here, such as restricted quadratic spline, penalized spline, and "a moving window". My 
viewpoint on these methods is as follows: Whenever a different smoothing method gives you 
vastly different results from the method I explained here, it is time to start worrying about the 
data, not about choosing the "right" method. 


